Home > Health > Extrinsic stabilization of antiviral ACE2-Fc fusion proteins targeting SARS-CoV-2

Extrinsic stabilization of antiviral ACE2-Fc fusion proteins targeting SARS-CoV-2

  • Case, J. B., Winkler, E. S., Errico, J. M. & Diamond, M. S. On the highway to ending the COVID-19 pandemic: are we there but? Virology 557, 70–85 (2021).

    CAS  PubMed  Google Scholar 

  • Dolgin, E. The race for antiviral medicine to beat COVID – and the subsequent pandemic. Nature 592, 340–343 (2021).

    CAS  PubMed  Google Scholar 

  • Wrapp, D. et al. Cryo-EM construction of the 2019-nCoV spike within the prefusion conformation. Science 367, 1255–1260 (2020).

    Google Scholar 

  • Jiang, F. et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nat. Rev. Cardiol. 11, 413–426 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Donoghue, M. et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, E1–E9 (2000).

    CAS  PubMed  Google Scholar 

  • Burrell, L. M., Johnston, C. I., Tikellis, C. & Cooper, M. E. ACE2, a brand new regulator of the renin–angiotensin system. Developments Endocrinol. Metab. 15, 166–169 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, B., Guo, H., Zhou, P. & Shi, Z. L. Traits of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021).

    CAS  PubMed  Google Scholar 

  • Taylor, P. C. et al. Neutralizing monoclonal antibodies for therapy of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, L. et al. Putting antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).

    CAS  PubMed  Google Scholar 

  • Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, C. et al. Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nat. Commun. 11, 1–5 (2020).

    Google Scholar 

  • Zoufaly, A. et al. Human recombinant soluble ACE2 in extreme COVID-19. Lancet Respir. Med. 8, 1154–1158 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, T.-I. et al. ACE2-Fc fusion protein overcomes viral escape by potently neutralizing SARS-CoV-2 variants of concern. Antivir. Res. 199, 105271 (2022).

    CAS  PubMed  Google Scholar 

  • Leach, A. et al. A tetrameric ACE2 protein broadly neutralizes SARS-CoV-2 spike variants of concern with elevated efficiency. Antivir. Res. 194, 105147 (2021).

    CAS  PubMed  Google Scholar 

  • Ferrari, M. et al. Characterization of a novel ACE2-based therapeutic with enhanced fairly than diminished exercise towards SARS-CoV-2 variants. J. Virol. 95, e00685-21 (2021).

  • Tanaka, S. et al. An ACE2 Triple Decoy that neutralizes SARS-CoV-2 reveals enhanced affinity for virus variants. Sci. Rep. 11, 1–12 (2021).

    Google Scholar 

  • Svilenov, H. L. et al. Picomolar inhibition of SARS-CoV-2 variants of concern by an engineered ACE2-IgG4-Fc fusion protein. Antivir. Res. 196, 105197 (2021).

    CAS  PubMed  Google Scholar 

  • Chen, Y. et al. Engineered ACE2-Fc counters murine deadly SARS-CoV-2 an infection via direct neutralization and Fc-effector actions. Sci. Adv. 8, 4188 (2022).

    Google Scholar 

  • Zhang, L. et al. An ACE2 decoy may be administered by inhalation and potently targets omicron variants of SARS‐CoV‐2. EMBO Mol. Med. 14, e16109 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aalberse, R. C. & Schuurman, J. IgG4 breaking the foundations. Immunology 105, 9–19 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, R. et al. Structural foundation for the popularity of SARS-CoV-2 by full-length human ACE2. Science 367, 1444–1448 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bou-Assaf, G. M. et al. Greatest practices for combination quantitation of antibody therapeutics by sedimentation velocity analytical ultracentrifugation. J. Pharm. Sci. 111, 2121–2133 (2022).

    CAS  PubMed  Google Scholar 

  • Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme: Cloning and purposeful expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).

    CAS  PubMed  Google Scholar 

  • Tian, X., Langkilde, A. E., Thorolfsson, M., Rasmussen, H. B. & Vestergaard, B. Small-angle X-ray scattering screening enhances standard biophysical evaluation: comparative structural and biophysical evaluation of monoclonal antibodies IgG1, IgG2, and IgG4. J. Pharm. Sci. 103, 1701–1710 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cimmperman, P. et al. A quantitative mannequin of thermal stabilization and destabilization of proteins by ligands. Biophys. J. 95, 3222–3231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Towler, P. et al. ACE2 X-ray buildings reveal a big hinge-bending movement essential for inhibitor binding and catalysis. J. Biol. Chem. 279, 17996–18007 (2004).

    CAS  PubMed  Google Scholar 

  • Steinmetz, W. E., Carrell, T. N., Peprah, R. B. & Schmatz, S. The conformation and task of the proton NMR spectrum in water of DX600, a bioactive peptide with a random coil conformation. Int. J. Spectrosc. 2011, 296256 (2011).

  • Huang, L. et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 278, 15532–15540 (2003).

    CAS  PubMed  Google Scholar 

  • Dales, N. A. et al. Substrate-based design of the primary class of angiotensin-converting enzyme-related carboxypeptidase (ACE2) inhibitors. J. Am. Chem. Soc. 124, 11852–11853 (2002).

    CAS  PubMed  Google Scholar 

  • Glasgow, A. et al. Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proc. Natl Acad. Sci. USA 117, 28046–28055 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barratt, E. et al. Van der Waals interactions dominate ligand-protein affiliation in a protein binding website occluded from solvent water. J. Am. Chem. Soc. 127, 11827–11834 (2005).

    CAS  PubMed  Google Scholar 

  • Tzeng, S. R. & Kalodimos, C. G. Protein exercise regulation by conformational entropy. Nature 488, 236–240 (2012).

    CAS  PubMed  Google Scholar 

  • Narang, D., James, D. A., Balmer, M. T. & Wilson, D. J. Protein footprinting, conformational dynamics, and core interface-adjacent neutralization ‘hotspots’ within the SARS-CoV-2 spike protein receptor binding area/human ACE2 interplay. J. Am. Soc. Mass Spectrom. 32, 1593–1600 (2021).

    CAS  PubMed  Google Scholar 

  • Humphrey, W., Dalke, A. & Schulten, Okay. VMD: visible molecular dynamics. J. Mol. Graph 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

  • Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).

    PubMed  Google Scholar 

  • Davies, A. M., Jefferis, R. & Sutton, B. J. Crystal construction of deglycosylated human IgG4-Fc. Mol. Immunol. 62, 46–53 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdipour, A. R. & Hummer, G. Twin nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike. Proc. Natl Acad. Sci. USA 118, 2100425118 (2021).

    Google Scholar 

  • Group, W. GLYCAM Internet. (Complicated Carbohydrate Analysis Heart, College of Georgia, Athens, GA, 2005–2022).

  • Case, D. A. et al. AMBER 2020. (College of California, San Francisco, 2020).

  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparability of easy potential capabilities for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    CAS  Google Scholar 

  • Maier, J. A. et al. ff14SB: enhancing the accuracy of protein facet chain and spine parameters from ff99SB. J. Chem. Principle Comput. 11, 3696–3713 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschner, Okay. N. et al. GLYCAM06: a generalizable biomolecular power discipline. carbohydrates. J. Comput. Chem. 29, 622–655 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manalastas-Cantos, Okay. et al. ATSAS 3.0: expanded performance and new instruments for small-angle scattering knowledge evaluation. J. Appl. Crystallogr. 54, 343–355 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernadó, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. Structural characterization of versatile proteins utilizing small-angle X-ray scattering. J. Am. Chem. Soc. 129, 5656–5664 (2007).

    PubMed  Google Scholar 

  • Weber, B. et al. A single residue swap reveals rules of antibody area integrity. J. Biol. Chem. 293, 17107–17118 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Supply

    Leave a Reply